edexcel

Mark Scheme (Results)
Summer 2014

IAL Chemistry (WCH03/01)
Chemistry Laboratory Skills I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code IA038353
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 ~ (a) ~}$	(Flame colour is) yellow-red / brick- red / orange-red / red-yellow	Crimson, orange, yellow	$\mathbf{1}$
ALLOW Red			

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (b)}$	Yellow solid / crystals / precipitate (both words required)	Cream precipitate	2
	(Precipitate) does not dissolve / does not change / is insoluble / remains		
	ALLOW Goes lighter / paler yellow "Nothing happens / no reaction" ONLY IF there is reference to precipitate in first part		

Question Number	Acceptable Answers	Reject,	Mark
$\mathbf{1 (c)}$	(Dark) Brown / yellow / yellow-brown / red-brown / (pale) straw coloured (1)	Red, orange, purple, violet, (dark) grey, black	$\mathbf{2}$
	ALLOW combinations of colours or reverse of colour orders in pairs	Iodide, $\mathrm{I}^{-}, \mathrm{I}^{-3}$	
Iodine / tri-iodide ion / $\mathrm{I}_{2} / \mathrm{I}_{3}^{-}$	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (d)}$	Blue-black	Purple Blue-black to colourless	$\mathbf{1}$
	ALLOW Just "blue" / just "black" / dark blue		

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{1 (e)}$	(The precipitate is) calcium carbonate		$\mathbf{2}$
	$/ \mathrm{CaCO}_{3}$	(1)	
	(The gas is) carbon dioxide / CO_{2}		
	Mark independently	(1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (f) (i)}$	Iodine / I 2	(1)	
(Shiny) black solid / grey solid / purple fumes	Brown solid	2	
	State AND colour needed ALLOW Vapour or gas for fumes Violet for purple (Dark) brown solution Purple in organic solvent No TE for a test on an incorrect product, or if no product is given	(1)	Just "purple"

Question Number	Acceptable Answers	Reject	Mark
1(f)(ii)	Hydrogen sulphide / $\mathrm{H}_{2} \mathrm{~S}$ (Colourless gas with) bad egg smell / turns lead ethanoate (paper) black / turns lead nitrate (paper) black OR Sulfur / S Yellow solid ALLOW Yellow precipitate ALLOW Sulfur dioxide / SO_{2} (Colourless gas with) choking smell / pungent smell / acrid smell / Turns... (potassium / sodium) dichromate((VI)) (paper) green blue litmus (paper) red Universal Indicator (paper) red potassium manganate((VII)) colourless potassium permanganate colourless ALLOW Correct formulae IGNORE Bubbles / effervescence / misty fumes / steamy fumes No TE for a test on an incorrect product, or if no product is given		2

Total for Question 1 = 12 marks

Question Number	Acceptable Answer	Reject	Mark
2(a)(i)	From maximum value of m / e OR From maximum value of m / z OR From maximum mass / charge ratio OR From (position of) peak furthest to right of spectrum (excluding small peaks due to isotopes)	Just "highest value" Biggest peak Highest peak	$\mathbf{1}$
	ALLOW Value furthest to the right hand side from (position of) last peak "line" for peak		
IGNORE Molecular ion			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 a (i i)}$	$\mathrm{x}=5 \quad \mathrm{y}=11$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
2(b)	 TE on (a)(ii) for a correct tertiary alcohol with the number of C atoms given in (a) (ii) ALLOW Partial display eg $-\mathrm{OH},-\mathrm{CH}_{3},-\mathrm{C}_{2} \mathrm{H}_{5}$	Structure shown as fully structural (no bonds shown) skeletal formula -HO Bonds should not go from C to H of OH	1

Question Number	Acceptable Answer	Reject	Mark
2(c)(i)	Hydrogen chloride / hydrochloric acid / HCl / HCl(aq)		$\mathbf{1}$

Question	Acceptable Answers	Reject	Mark

Number		
2(c)(ii)	$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	2
	Correct formulae	
	ALLOW	
	$\mathrm{NH}_{4}^{+} \mathrm{Cl}^{-} / \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$ Multiples	
	State symbols (1)	
	Second mark depends on equation showing only correct species even if unbalanced.	
	ALLOW $\mathrm{HCl}(\mathrm{aq})$	

Question Number	Acceptable Answer	Reject	Mark
2(d)	Alcohol has a peak for O-H bond OR ether has no peak for O-H bond ALLOW Alcohol has a peak for C-OH / C-O-H / -OH	Just 'alcohol has an OH bond / group'	1
	OR I dentification from C-O if stated that C-O in ether absorbs at a different wavenumber from C-O in alcohol / ether has C-O-C	Just identification from C-O without detail C-O peak higher in ether	
OR Look at fingerprint region and compare with a compound of known identity	ALLOW Use of " absorption / stretch / vibration / wave number / reading / drop / trough" instead of peak R-O for C-O	range / spectrum instead of peak	
IGNORE "ester" if apparently written by mistake for "ether" Broad and sharp (peaks)			

Total for Question 2 = 7 marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a)}$	In acid: colourless	(1)	Clear or white for colourless
	ALLOW alkali: (pale) pink Purple / red / magenta in alkali or combinations of colours eg purple-red	Violet	
Correct colours wrong way round scores	(1)		

Question Number	Acceptable Answers		Reject	Mark	
$\mathbf{3 (b)}$					

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{3 (c) (i)}$	$35.5 \times 4.18 \times 10.2=(1513.578)=$ $1514(\mathrm{~J})$ IGLLOW IGNORE sf except 2 sf or less	1500 J	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	$\left(1513.578 / 3.00 \times 10^{-2}=50452.6 \mathrm{~J}\right)$ $\Delta H=-50.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Value ALLOW If (c)(i) is $1510, \Delta \mathrm{H}=-50.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ TE from (c)(i) e.g. If $(\mathrm{c})(\mathrm{i})$ is $1500, \Delta \mathrm{H}=-50.0\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ If (c)(i) is $1513, \Delta \mathrm{H}=-50.4\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ If $(\mathrm{c})(\mathrm{i})=20 \times 4.18 \times 10.2=852.72 \mathrm{~J}$ Then $\Delta \mathrm{H}=-28.4\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Sign and 3 sf if a value has been calculated		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i i i)}$	Temperature is taken before heat loss occurs / before mixture cools		$\mathbf{1}$
	ALLOW Because heat will be lost To reduce errors due to heat loss Temperature falls / drops quickly	To prevent heat loss Temperature rises / changes quickly	

Question Number	Acceptable Answer	Reject	Mark
3(c)(iv)	One mark each for any TWO of the following Temperatures are monitored continuously Equivalent to having more / many readings	Monitored frequently	$\mathbf{2}$
	More points give a more accurate line / plot	Prevents errors when drawing graphs	Magnetic stirrer more efficient than manual stirring / stirring is more uniform / makes temperature more uniform / makes concentration more uniform
Heat loss is reduced because reaction is completed more quickly / because there is no time delay in readings	Just "Heat loss is reduced"		
IGNORE Comments on insulation of beaker, rate of reaction as opposed to time for experiment to be completed, parallax error	Prevents human error		

Question Number	Acceptable Answers	Reject	Mark
3(d)(i)	Correct answer without working scores (2) (Moles of HCl) $=20.0 \times 1.50 / 1000$ $=3.00 \times 10^{-2}=(\text { Moles of } \mathrm{NaOH})$ ALLOW Moles of $\mathrm{HCl} / \mathrm{NaOH}=3.00 \times 10^{-2}$ Concentration $=\left(\frac{3.00 \times 10^{-2}}{15.50} \times 10^{3}=\right)$ $\begin{equation*} 1.93548 / 1.94 / 1.9\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$ IGNORE sf except 1 sf TE from first to second mark	Just ' 3.00×10^{-2} 10.03 ' / 0.03' 1.93 and other incorrect roundings	2

Question Number	Acceptable Answers	Reject	Mark
3(d)(ii)	$\frac{2 \times 0.05}{5.00} \times 100 \%$	Two answers eg 0.02 and 2	$\mathbf{1}$
	$=(\pm) 2 \%$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (e) (i)}$	To make temperature (change) bigger / (more) obvious / (more) significant	To allow reaction to go to completion	$\mathbf{1}$
OR To make more exothermic / to produce more heat energy / so more heat is given out	To increase enthalpy change Just 'to increase the heat'	OR To reduce percentage error in temperature (change)	IGNORE Additional comments on rate increasing if rest of answer is correct Reference to volumes Easier to measure temperature change

Question Number	Acceptable Answer	Reject	Mark
$\mathbf{3 (e) (i i)}$	It is corrosive / burns skin / damages eyes / caustic	Toxic Just "damaging" Flammable	$\mathbf{1}$
	ALLOW Damages skin IGNORE More irritant or harmful or dangerous NaOH is an alkali		

Total for Question 3 = 17 marks

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (a)}$	Orange to green / blue / brown		$\mathbf{1}$
ALLOW Orange to blue-green Orange to dark green			

Question Number	Acceptable Answers	Reject	Mark
4(b)	To prevent solvent boiling / vaporising / escaping (from mouth of flask)	ALLOW Solvent may ignite / is flammable	Reactant / product / butan- 2-ol / butanone are prevented from boiling / vaporising / escaping (from mouth of flask)
IGNORE Comments on sulfuric acid spray being corrosive Butan- 2-ol / solvent / butanone is volatile or has a low boiling temperature			

Question Number	Acceptable Answers	Reject	Mark
4(c)	(Purpose:) removes / neutralizes ((1) (excess) acid (Method:) Put in a (stoppered) separating funnel / tap funnel with sodium hydrogencarbonate (and shake the mixture) (1)	Removes impurities	3
	Open the tap at intervals / remove stopper at intervals / release pressure at intervals ALLOW Pressure builds up because carbon dioxide forms	(1)	
Final mark can be awarded if washing is carried out in a stoppered flask			

Question Number	Acceptable Answers	Reject	Mark
4(d)	Drying agent / removes water / removes moisture	Dehydrating agent Reacts with water	$\mathbf{1}$
	ALLOw Removes impurities		

Question Number	Acceptable Answer	Reject	Mark
4(e)	First mark:		4
	Suitable flask (round bottom or pear	Conical flask	
	shaped) fitted with stillhead, and with	Still head	
	thermometer in correct position with bulb opposite opening to condenser	open	
	ALLOW		
	Flask with long neck and delivery tube in place of flask \& stillhead		
	IGNORE		
	Fractionating column (1)		
	Second mark:		
	Condenser angled downwards with correctly drawn inner tube and (water cooled) outer tube	Air condenser (ie no water jacket)	
	IGNORE (Direction of) water flow in condenser		
	Third mark: Collecting flask with vent in flask or in connection to it	Sealed system	
	ALLOW		
	Open necked flask / beaker (1)		
	Fourth mark:		
	Electrical heater	Use of Bunsen but no water	
	ALLOW		
	Water bath heated by electrical heater / Bunsen / heat arrow		
	If heat source is shown as "Heat" or		
	with an arrow then ALLOW either of these precautions:		
	Tube between condenser and collecting		
	flask to lead fumes away to drain or fume cupboard		
	OR		
	Cool collecting flask in ice (1)		
	Labels only needed for items which		
	cannot be identified in diagram eg electric heater		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (f) (i)}$	$(5.0 / 0.805)=6.2112 / 6.211 / 6.21 /$ ALLOW comma for decimal point	$6\left(\mathrm{~cm}^{3}\right)$	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
4(f)(ii)	There are many possible correct methods for this calculation. Two of these methods are shown below: Look at final answer: 4.8(2) (g) scores 3 marks, 1.97 (g) OR 3.08 (g) scores 2 marks For other answers, look at working; do not penalise intermediate rounding. 0.042 moles butanone gives final answer of 4.9 (g) First mark: 3.0 g butanone $=0.041609 \mathrm{~mol}$ THEN Route 1: Second mark Need to make $\frac{(0.0416 \times 100)}{64}$ $\begin{equation*} =0.065 \mathrm{~mol} \tag{1} \end{equation*}$ Third mark Mass butanol $=(0.065 \times 74.1)$ $\begin{equation*} =4.8175 / 4.8(2)(\mathrm{g}) \tag{1} \end{equation*}$ OR Route 2: Second mark Mass of 0.041609 mol butanol $=0.041609 \mathrm{x}$ $\begin{equation*} 74.1=3.082(\mathrm{~g}) \tag{1} \end{equation*}$ (Use of 0.042 mol gives 3.11 (g)) Third mark Mass butanol needed $=$ $(3.082 \times 100 / 64)=4.8175 / 4.8(2)(\mathrm{g})(1)$ IGNORE sf except 1 sf at all stages Rounding may be done at different stages of calculation and intermediate values may not be shown		3

Pearson Education Limited. Registered company number 872828
with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

